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• Several authors report that the 
LENR power increases with the 
temperature.  
 

 

Temperature activated reactions 
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• The temperature dependence is 
described by an Arrhenius law 
 

• The rate of a process, for instance heat-producing reactions, is a 
function of an activation energy E and the temperature T : 
 

    w = A.exp(-E/kT) 
• With : 

– w  :   heat production power (W.m-3) 
– A   :   pre-exponential factor  
– E    :   activation energy 
– k    :   Boltzmann’s constant 
– T    :   absolute temperature of the reactive medium.  

 

Temperature activated reactions 
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How to control such a reactor ? 

• The stability of T 
activated reactors is 
frequently discussed 
with a diagram 
similar to this one 

• Such diagrams refer 
to the operation of 
batch reactors in the 
chemical industry 

Storms – How Basic Behavior of LENR can 
Guide. A Search for an Explanation, JCMNS, 
20 (2016), 105-143  

TB : thermal barrier 
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• Largely used for 
synthesis of many 
different chemical 
products 

 

 

 

• The reactor is 
loaded with the 
reactants,            
the reaction is 
completed,           
the products are 
unloaded 
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• Exothermic reaction: 
If temperature goes 
out of control, things 
may go wrong 

• Endothermic 
reaction: Reaction 
controlled by 
heating, no problem 
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Batch reactor control 
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• Temperature is 
controlled by 
the 
combination of 
wall cooling and 
stirring to 
enhance heat 
exchange 
between charge 
and wall 
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Batch reactor control 

Basics:  

• Temperature 
must be 
maintained 
below the 
point of non 
return at any 
time 
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How to start the reaction ? 

• After loading, 
the temperature 
is low 
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9 



How to start the reaction ? 

• As long as the temperature is low, the 
reaction has no reason to start 
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How to start the reaction ? 

• To start the reaction you have to 
tease the dragon’s tail 
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How to start the reaction ? 

• Start-up by 
heating 
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How to control the reaction ? 

• Taming the dragon with water cooling 
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How to control the reaction ? 

• Reaction rate is controlled 
by adjusting the cooling 
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Loss of control 

• If cooling is not 
sufficient the 
temperature goes 
out of control  
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Loss of control 

RUNAWAY ! 
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Role of thermal inertia 

• Example: Polystyrene polymerization 

• Reactor loaded with reactants at the beginning 
of the operation « All on board » 

 • T rises slowly 
because of 
thermal 
inertia 

• T decays when 
reactants 
become 
exhausted 
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Control by thermal inertia 

• Exhausting the dragon 
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Control of reactants input 

• Example: Synthesis of nitroglycerin 

• Acid is added slowly to the charge 

 

• Reaction 
start: 22°C 

• If T> 30°C, 
the charge is 
dumped out 
in water 
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Control of reactants input 

• Feeding the dragon slowly 
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Control with a large heat exchange 

• Reaction is 
controlled by 
adjusting the 
coolant 
temperature 
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Differences between LENR Reactor 
and Batch Reactor 

• LENR : Reaction is continuous 

• Thermal inertia can only help during transients 

• Activation energy may be high, so that temperature 
sensitivity may be high 

• Heat is preferably recovered at high temperature 
(for conversion efficiency) 

 

• Reference to the thermal behavior of batch 
reactors is inappropriate 
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Continuous reactors 

• In the chemical industry some reactors are 
designed for continuous operation 

 

• Example : Production of synthetic fuels by the 
Fischer-Tropsch process 
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Fischer-Tropsch Process 

• Production of synthetic fuels from CO+H2 gas 

• Reaction (synthesis of alkanes - simplified) : 

     nCO + (2n+1)H2 ------> CnH2n+2 + nH2O     

    DH =-n.165kJ 

• Yields a blend of hydrocarbons : methane, 
gasoline, distillates, waxes, etc.  

• The proportions depend on the type of catalyst 
(Fe-Co-Ni) and the process conditions (pressure 
and temperature) 
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Fischer-Tropsch Reactors 

• FT reactors must be designed to allow an 
efficient control of the heat flow: 

 

1. The reaction is highly exothermic 

2. The temperature must be maintained in a 
narrow range to produce the valuable 
hydrocarbons 
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Fischer-Tropsch Reactors 

• Main features: 

– High heat transfer capability 

– Initial heating and heat removal by 
a hot fluid (steam)   

 

• Example: 

• Multitube reactor ARGE design 

• 2000 tubes dia 50mm 
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Fischer-Tropsch Reactors 

• Some concepts 
utilize 
microchannels 
technology to 
ensure a very 
high heat 
exchange and a 
uniform 
temperature in 
the reactor  

 31 



Multitube design  

Multitube design is 
already used in the nuclear 
industry to guarantee  the 
high heat flux required 
This design provides an 
efficient heat transfer, 
limits the surface 
temperature of the tubes 
and avoids water splitting 

Nuclear fuel assembly 
for a PWR 
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Potential design LENR systems 

• LENR reactors can be controlled via the 
cooling fluid temperature 

• Additional control possible for some types of 
reactors via gas pressure, electrical excitation 
input, etc.  

• If the reactor is sensitive to the temperature, 
a high heat exchange design is compulsory 
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Plate and tubular types LENR reactors 
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Plate and tubular types LENR reactors 
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Hypotheses: 

LENR specific power :                          w (W.m-3) 

Arrhenius’ law activation energy :    E (J) 

Operating temperature :                     T (K) 

Heat exchange coefficient :                h (W.m-2.K-1) 
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Plate and tubular types LENR reactors 
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Hypotheses: 

LENR specific power :                          w (W.m-3) 

Arrhenius’ law activation energy :    E (J) 

Operating temperature :                     T (K) 

Heat exchange coefficient :                h (W.m-2.K-1) 

 

Conditions for stability 

h > Ewt/kT2  h > ½ Ewr/kT2  
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 LENR Reactor Heat Control 

• Heat exchange by 
forced liquid flow 
and/or boiling 
liquid  

 

• Heat exchange by 
forced organized 
gas flow  
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How to improve the COP ? 

Temperature controlled reactor :   COP = ( Ein + Exs) / Ein 
 

Small reactor  :   Low  volume / surface ratio  
 High heat losses    

Ein >> Exs 
                             

HIGH HEAT LOSSES 38 



How to improve the COP ? 

Temperature controlled reactor :   COP = ( Ein + Exs) / Ein 
 
Cluster of many reactors  :   High  volume / surface ratio  

 Low heat losses    
Exs >> Ein 

                             

HIGH HEAT LOSSES LOW HEAT LOSSES 39 



How to improve the COP ? 

Temperature controlled reactor :   COP = ( Ein + Exs) / Ein 
 

COP = 1.X COP >> 1 
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Please do no longer refer to such 
diagrams for continous LENR reactors 
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Thank you for your attention 
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