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NASA Aeronautics Research Six

Strategic Thrusts

. Safe, Efficient Growth in Global Operations
@ + Enable full NextGen and develop technologies to substantially
reduce aircraft safety risks

{ﬂ;] Innovation in Commercial Supersonic Aircraft
<=7 . Achieve a low-boom standard

Ultra-Efficient Commercial Vehicles
» Pioneer technologies for big leaps in efficiency and
environmental performance

2y Transition to Low-Carbon Propulsion
» Characterize drop-in alternative fuels and pioneer
low-carbon propulsion technology

@ Real-Time System-Wide Safety Assurance

\g » Develop an integrated prototype of a real-time safety
monitoring and assurance system

Assured Autonomy for Aviation Transformation
» Develop high impact aviation autonomy applications
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Benefits of Electric Propulsion

Low Carbon Propulsion

o NASA studies and industry roadmaps
have identified hybrid electric
propulsion systems as promising
technologies that can help meet
national environmental and energy
efficiency goals for aviation

Potential Benefits

o Energy usage reduced by more than

60%
o Harmful emissions reduced by more Electrifvi Aviati
ectrifyin viation
than 90% Light aircraft are carly!gcts fghc efficiency

and safety benefits touted for electric propulsion

o Objectionable noise reduced by more
than 65%
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Types of Electric Propulsion

Hybrid Electric
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Energy Conversion and Storage Systems

* Fuel Cell

« Batteries

e Supercapacitors

« Multifunctional structures with energy storage
capability

* Other systems
— Low energy nuclear reaction

— Flywheel energy storage
— Energy harvesting
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Application of Proton Exchange
Membrane (PEM) Fuel Cell

Boeing Flight Demonstration Airbus Flight Demonstration —
Emergency Power
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Solid Oxide Fuel Cell (SOFC)

Benefits:

Can be used with both H, and CO
Direct utilization of hydrocarbon fuel

High temperature supports steam reforming, which
boosts system efficiency

Greater efficiency (> 60 %) with hybrid gas turbine +
SPFC cycle

High quality heat for thermal management
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Early Demonstration of a Heavy Fuel Solid Oxide Fuel
Cell — Enabled Power System for Electric Aircraft

ca

« Integration of key technologies

« 160-190 knots cruise on 130-190 Electrical Power
KW

« Hybrid solid oxide fuel cell with
>60% fuel-to-electricity efficiency

« Designed for cruise power

* Applicable to APUs for large
aircraft Turbo

COMmpressor

Airlambient
Exhaust

Nicholas Borer of NASA LaRC - Lead
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Hybrid Gas Turbine — Solid Oxide Fuel Cell Concepts

Customer ===
Power Ext. C <Rl
Qolion 2- » 3T core sizad for cruisa (4.5 MW
FC Augmentad » FC sized thof suppl. power (6.5 MW)
Gas Turbine « Corventional dual spool architectura
« Aeformer H2-FC, O0—comb.
Frr B ) hl
1
1 .  FC szed for partial cruise power (2.5 I'."F.n"ﬁ:
! Lotion 2 » (3T sized for takeofi suppl. Power (7 SMW)
; Fow TU"h'_:" « Sngle spool architectura :
: compounding » Reformer H2-» FC, CO->comb. 1
|
RS i L K
« FC szed for takeoff powear (100W)
+ Gas turbine sized to provide pressurized air,
N absorb FC discharge, burn GO (1MW)
Lotion & » Hybrid P GT makes alac. + Fn
istributed « Bisformer H2-3 FC, 00> comb.
powar: » Distributed propulsion units
propulsion
Legend N=ngzia
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M = edec. Motor A = fual cadll

Distrib. Propulsion units

GE Aviation work funded by NASA N+3 studies (AIAA 2010-6537)

Powar/ propulsion unit

G CONTIDI8S500 A= redormer
T= Turbina B= boosier
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Placement of Solid Oxide Fuel Cell in Gas
Turbine Engine

10-stage high radius ratio,

Low PR Fan moderate PR compressor
%
Y Bectric motor
Y (sized for cruise) Fuel cell air supply volute
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i‘f‘ﬂ'f‘f‘ Fuel Cell Sack
LN T e e

Located in fusalage

/’J Volume comparable to or
3.6:1 reduction > greater than main enging
gearbox

GE Aviation work funded by NASA N+3 studies (AIAA 2010-6537)
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Solid Oxide Fuel Cell Requirements for
Large Commercial Aircraft

 Need ~4X or higher increase in specific power
(gravimetric and volumetric)

« Sulfur tolerant system

« Power output deterioration rate < 2% per 10,000
hours

 |dle-to-max power output rise compatible with flight
safety requirements

* Heating in less than 30 min and durability under
thermal cycling conditions

 Integration with aircraft without aerodynamic penalty
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NASA High Power Density SOFC Design

Wikg | WIL

BSC Design Solution
Uniquely light weight and low
volume

Removing metal interconnect Fabrication method of co-firing all-
reduces both weight and ceramic stacks as a unitized
volume by a factor of 5 .

block reduces internal
resistance and increases
manufacturing yields.

: [ interconnect Low temperature electrode
C"gens‘iegr:‘al NASA Design | [l Cathode infiltration expands the range of
: i‘no;e'yt catalysts for development of
ASC = Anode Supported Cell new electrodes for sulfur
BSC = Bi-electrode Supported Cell tolerance, direct hydrocarb g
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Energy Density of Batteries

Pb-acid M Practical
Ni-Cd Theoretical
Ni-metal hydride
Li<ion
Li-s
n

Zn-air
I

Gasoline F

0 2000 4,000 6000 8,000 10,000 12,000 14,000
Energy density, watt-hours/kg

« Significant weight penalty from batteries
« Requirement for large commercial hybrid electric
aircraft: 750 — 1000 w-h/kg
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All Electric Aircraft Design with Li-Air Battery

114 passengers, all electric, design range of 2400 nautical
miles, Li-Air battery energy density — 2000 watt-hour/kg

Air

11.38%0, LAl (4400km) Fuel  Baseline (4319 km)

0.00% 2167% battery

air 1.76%
0.00%

Battery
29.64%

landing
gear
4.02%

propulsion
6.35%

fuselage
5.03% 0.70% 1.34% A.06%

landing gear

Gross takeoff weight = 52300 kg

 Gross takeoff weight = 59786 k
. 2 Maximum landing weight = 40400 kg

Maximum landing weight = 67464 kg

Work from Stanford University (Vegh and Alonso — AIAA Paper)
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Multifunctional Structures with Energy
Storage Capabillity
AN

Graphene/Carbon
Nanomaterial Anode

Electrolyte
Gra‘)heneICarbon
Nanomaterial Cathode

Current
Collector

Insulator

Current research at NASA
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Hybrid Battery - Supercapacitors
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Energy Storage Requirements for Large
Commercial Aircraft

> 4X Increase In specific energy compared to the
state-of-the-art leading to weight reduction

Long-term Durability with large number of charge-
discharge cycles

Faster charging time

Integration with aircraft
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Dec. 2012 Mar. 2013
Energy Produced (\Wh) 62,000 160,000
Power Density (W/kg) 5.3x102 7.0x103
Thermal Energy Density (Wh/kg) | 6.1x107 6.8x102
Initial Input Power (W) 120
Reaction Mass (g) 1 1
Start-up Time (h) 2
Total Test Duration () 96 116 et e et o
Max. Temperature (deg. C) 218283

!Levi, G., Foshi, E., Hartman, T,, Hoistad, B., Pettersson, R., Tegner, L,andEs;en,: o
Reactor Device Containing Hydrogen Loaded Nickel Powder”, May 2013.
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Flywheel Energy Storage

Touchdown
High-strength —  bearing
carbon-fiber/epoxy

composite rim
> 800 wh/kg AN

specific energy

density |
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' .; Magnetic
] bearings

nanotube-
enabled fiber Motor/
and high power Generator
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motor/generator Xiﬁ:iunm
Touchdown °
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Energy Harvesting in Gas Turbine Engines
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« Potential for kWs power generation e :}
« Solid state energy harvesting o :
« Weight-optimized integrated turbine g‘“‘”’g H w2 -
engine structure v -

NASA Aeronautics Team Seedling (NASA GRC, UTRC, Purdue, o -

- - + . 7
AFRL, CWRU) Thermionic+Thermoelectric
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Summary

» For large hybrid electric or all electric commercial
airplane, 4-5X increase in power density of solid
oxide fuel cell and specific energy or batteries
required, along with long-term durability

« Faster charging time for batteries and heating time
for solid oxide fuel cell required

« Multifunctionality can reduce weight of overall
structural system containing power conversion and
energy storage

 Integration with aircraft is a challenge and must be
addressed early on with demonstration on smaller
airplane

Glenn Research Center at Lewis Field




